Categories

A category is a collection of objects, with arrows (also called morphisms) between
these objects. (There are some other restrictions, but our examples will satisfy them so
we’ll skip them here.)

But don’t think of the objects as primitive things like numbers; the objects are usually
sets. For programmers, there’s actually only one practical category to think about: the
category of types.

In the category of types, the objects are data types, such as Integer, String, Point,
Optional<Integer>. Each data type is a set of all possible values with that data

type.

The arrows are (unary) functions that take an input in one data type and produce an
output in another data type.

The Category of Types

° String

s.hashCode()

s.length()

® =N+

Functors

Suppose we have two categories, C and D, each with some sets and arrows. A functor
is a mapping from the sets of C to the sets of D, and from the arrows of C to the arrows
of D. One restriction is that an arrow between two sets must map to an arrow between
the two mapped sets. (There are some other restrictions, but our examples will satisfy
them so we’ll skip them here.) So here’s an example of a functor f:

C D

/
/

\ -
/) k\ Ny

-
/

But | said there’s only one category that we care about - the category of types. So the
only functors that we care about are functors from this category to itself. Functors from a
category to itself are called endofunctors, so an endofunctor of the category of types
maps each data type to another data type, and each function to another function.

An example of such a functor is Optional. It maps each data type T to Optional<T>.
Now take a function: say String: : length, which converts a String to an Integer.
The functor will map the functionto x -> x.map (String::1length), which converts
an Optional<String>toan Optional<Integer>.

Another example of a functor is List. It maps each data type T to List<T>. The
function string: : length will be mapped to the functionto x ->
x.map (String::length), which converts a List<String>toan List<Integer>.

So a functor can be thought of as a “wrapper”, where the wrapper still knows how to
apply arbitrary functions to its contents, usually implemented by a method named map.

Applicatives

A functor lets us apply a unary function to a “wrapped” value, but what if we want to
apply a binary function to two “wrapped” values? As a concrete example, say we want
to implement this:

// returns the sum of the two values if both are present,
// otherwise returns empty
Optional<Integer> add(Optional<Integer> a, Optional<Integer> b);

If you play around with this, you'll see that it's not possible to implement this using only
Optional: :map. The following will return an Optional<Optional<Integer>>, not
an Optional<Integer>:

Optional<Integer> add(Optional<Integer> a, Optional<Integer> Db) {
return a.map(aa -> b.map(bb -> aa + bb)); // doesn’t compile!

For most developers, the most obvious fix is to change the first map to a f1atMap.
Supporting f1atMap will give you a monad, which is the next topic. But it turns out that
there’s a weaker thing that we can add to the Optional class if we only need to
implement our binary function:

// method on Optional<T>

// returns the function applied to this value if both this value and
// the function are present, otherwise returns empty

Optional<U> apply (Optional<Function<T, U>> function);

This doesn’t exist in the Optional class, probably because flatMap is more familiar
to developers, and is also more powerful. But if we only have this weaker, hypothetical
function apply (and map), it's enough to implement our binary function:

Optional<Integer> add(Optional<Integer> a, Optional<Integer> Db) {
return a.apply(b.map(bb ->
(Function<Integer, Integer>) (x -> x + bb)));

There’s another small thing we need to be able to use Optionals: Optional: :of, to
create one in the first place.

So an applicative functor is a functor that also supports of, which takes a normal
value and returns a wrapped value, and apply, which takes a wrapped function and a
wrapped value, and returns the wrapped result value. An applicative functor lets us

apply binary (which can then be extended to ternary, quaternary, etc.) functions to
wrapped values.

Here’s another way to think about this with a picture. Here, a—(b—<c) represents a
binary function (by currying, a binary function is equivalent to taking the first value as
input and returning a unary function taking only the second value as input). A generic
functor f can map this to fa—f(b—-c), but in order to get the desired mapped binary
function fa—(fb—fc), we need the apply operator f(b—c)—(fb—fc

- \ (e f(a)
/ .\

b—-c f(lb = c)

Monads

A functor knows how to apply unary functions to wrapped values, and an applicative
functor knows how to apply binary (and ternary, quaternary, etc.) functions to wrapped
values. What can an applicative functor still not do?

Suppose we have a function that takes a normal value and returns a wrapped value.
For example, suppose a function String: :validate returns an
Optional<String>, which contains the original string if it is valid, and is empty
otherwise. But what if we currently only have a wrapped value (maybe from a previous
validate function)? Essentially we need to be able to implement this:

// returns the function applied to this value if the input value is
// present, otherwise returns empty
Optional<String> flatMap (

Optional<String> &,

Function<String, Optional<String>> function);

If you play around with this, you'll see that it's not possible to implement this using only
Optional: :map and the additional Optional: :apply method defined in the
previous section.

So an applicative functor cannot necessarily support £1atMap. However, Optional
and List do support f1latMap, and that means they are something more specific than
applicative functors: they are examples of monads.

A monad is a functor that also supports of, apply, and flatMap. And it turns out
apply can be implemented with f1atMap, so the only necessary requirements are of
and flatMap. A monad lets us apply functions that return wrapped values.

There’s an alternative method that could be added to Optional, which turns out to be
equivalent in power to flatMap:

Optional<T> flatten (Optional<Optional<T>> a) {
return a.flatMap(aa -> aa);

It's equivalent because flatMap can also be implemented with flatten:

Optional<T> flatMap (
Optional<T> a, Function<T, Optional<U>> function) {
return a.map (function).flatten();

So an alternative definition of a monad is a functor that also supports of and flatten.

A monad is a monoid in the category of endofunctors

This is a legendary phrase making fun of the obscureness of category theory
terminology in programming. But we almost have enough knowledge to explain this
phrase.

We'll first define the category of endofunctors. (I know | had mentioned the category
of types was the only practical category. | still stand behind that - explaining the phrase
isn’t really a practical exercise after all.)

The objects in this category are the endofunctors: Optional, List, etc. Unlike data

types, endofunctors aren’t “sets of things”, so you’ll have to think of these objects as
black boxes.

The arrows in this category are natural transformations between two endofunctors. In
our scenario, think of a natural transformation as a generic (defined for every data type
T) function that maps values with one kind of wrapper to values with another kind of
wrapper. (There are some other restrictions, but our examples will satisfy them so we’ll
skip them here.) For example, this function is a natural transformation from Optional
to List:

List<T> toList (Optional<T> value) {
return value.stream() .toList () ;

}

Now we need to define a monoid. A monoid is a set of items, and an operation that you
can perform on pairs of items to get another of the same type of items. For example, the
integers under addition: you can add two integers to get another integer. Or, the strings
under concatenation: you can concatenate two strings to get another string. There must
also be an identity element: something that doesn’t affect the other item. For example, 0
is the identity under addition. The empty string is the identity under concatenation.

But endofunctors aren’t sets of items, so this definition doesn’t make sense for our
category of endofunctors. Instead, we need to generalize the definition into category
theory language, avoiding anything that requires the objects to be sets.

For integer addition, consider a category where one object consists of the integers Z,
and another object consists of ordered pairs of integers Zxz. Then there is an arrow
between them that represents addition.

We also have an object with a single element, which we’ll call 0. An arrow from {0} to Z
maps 0 to 0 in Z, so the arrow “encodes” the identity under addition.

So to generalize this: a monoid is an object T in a category, along with an arrow from
the “cross-product object” TxT and an arrow from the “identity object” |. These objects
have to be defined in a way that satisfies the category restrictions.

What is a monoid in the category of endofunctors? Well, first we take any endofunctor;
let's say Optional. The cross-product object is the functor that maps T to
Optional<Optional<T>>, so the corresponding arrow is a natural transformation
from Optional<Optional<T>> 10 Optional<T>, whichis just flatten! And the
identity object is the functor that maps T to T, so the corresponding arrow is a natural
transformation from T to Optional<T>, which is just of!

So a monoid in the category of endofunctors is an endofunctor with f1atten and of - a
monad!

Functor: (2 - b) - fa - fb
Applicative: f (a - b) - fa - fb
Monad: (a - fb) - fa - fb

